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Shedding light on confidence and error intervals.

Measuring a Small  
Number of Samples  
and the 3v Fallacy

any solid-state circuits papers today report the mean n  and the stan-
dard deviation v  of measurement results obtained from a small num-

ber of test chips and then compare them with numbers other authors 
obtained. Almost none of them discuss confidence intervals, ranges of 
values for that standard deviation within which the true value lies with a 

certain probability. Many implicitly assume that the 3!n v  range would contain all but 0.27% 
of chip samples to be expected in volume production. This is incorrect even if it is certain that  
the measured quantity is exactly normal distributed. 

In this tutorial article, we shed some light on confidence and error intervals and show how 
the naive approach to interpreting 3!n v  can lead to a misjudgment of error probabilities by 
orders of magnitude. We show that using standard deviations only works for normal distribu-
tions, and then we propose a better, distribution-independent way to report measurements in 
the future. 

Along the way we show how many ICs you actually need to measure to obtain a range that 
contains, with a probability as small as 75%, all but 0.27% of the ICs coming from the same batch 
as the measured ICs. This number is 1,027.
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Introduction
We have all been in this situation: a 
small number of ICs—some ten or 
20—come back from a multiproject-
wafer (MPW) run, and then we are 
expected to make measurements, 
derive some statistical data from 
it, and draw conclusions from the 
derived data. The simplest way to do 
statistics is the following.

We assume that we are looking 
at a small number N  of samples of 
a larger population. For example, 
we have N 24=  test chips from an 
MPW run. We assume they behave as 
if they were 24 ICs randomly taken 
from a huge batch. 

We then measure a quantity ,x  
getting N  measurement values .xi  
For the huge batch, these values 
have the mean xn  and the standard 
deviation ,xv  which we would like 
to estimate. Without additional prior 
knowledge, the best estimates are [1] 
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The denominator N 1-  makes 
the estimate unbiased for low sam-
ple sizes .N  So far, so good. 

In the area of sensor electron-
ics, it has recently become fash-
ionable to draw the 3! v  limits in 
the published graphs, irrespective 
of the number of measured values 
available [2]. 

Showing the 3! v  limits for 
small sample sizes is highly prob-
lematic. To start with, it is not 3! v  
that can be plotted but .s3!  The 
implicit assumption (when men-
tioning 3v ) that the true standard 
deviation v  and its estimate s  are 
the same is the first 3v  fallacy. 

An even bigger problem is what 
it implies when authors plot 3! v  
limits. Most readers will assume 
that the 3! v  limits drawn are 
bounds outside, which only 0.27% 
of the huge batch’s samples will be 
found. This is an even greater fal-
lacy because it is not even correct 
if we are certain that the values  
we look at are samples from a nor-
mal distribution. 

In this article, we will show 
what is so wrong about using 3! v :  
first, we show what s3  and 3v  
would really mean if we were cer-
tain that we are looking at samples 
of a normally distributed batch. We 
are never certain of this, however, 
and if we measure trimmed ICs, we 
are even certain that it cannot be a 
normal distribution. Therefore, we 
discuss a method of doing statis-
tics that also works if the underly-
ing distribution is not known but 
has any halfway reasonable shape 
(being continuous is already more 
than sufficient). 

The main question then remains: 
How many samples will be outside 
the limits? We propose a new stan-
dard method to define limits that 
can be used for benchmarking in 
future publications, such that mea-
surements become comparable even 
if sample sizes are very small, dif-
ferent, and coming from differently 
shaped distributions. You, the reader, 
can test this with your own data sets 
using our Web application [3]. 

A First Look at the Data  
and at Percentiles
We will demonstrate everything using 
data from a real-world example: 
N 24=  measurement values taken 
from [2], temperature errors of an 
integrated, trimmed temperature sen-
sor. The values sorted in ascending 

order: . ,x 12 237i =-  –9.712, –9.218, 
–7.235, –6.455, –4.869, –4.842, –4.407, 
–3.460, –2.527, –1.764, –1.711, –0.613, 
0.252, 0.363, 1.193, 1.720, 2.185, 
3.379, 5.496, 6.511, 8.722, 10.292, 
19.126 mK. 

To compare different sample 
sizes, we also look at a second set of 
data of sample size .N 8=  It is just the 
first eight ICs that were measured: 

. ,y 7 235i =-  –1.711, 0.363, 3.379, 
6.511, 8.722, 10.292, 19.126 mK.  
We now have two differently sized 
samples of which we are certain 
that they have the same underlying 
statistics. 

We have plotted the data series 
xi  as a cumulative distribution in 
Figure 1: at every value ,xi  the curve 
steps by %/ .N100  Like this, you 
can read off the graph, for every ,x  
what percentage of the measured 
points lie below that .x  We call the 
point below which %p  of all points 
lie ,Pp  the pth percentile of the 
distribution: 

	 .x P pP i p# =" ,

The special scaling of the vertical 
axis would let a normal distribution 
appear as a straight line [1]. This 
approximately seems to be the case 
in between the lines P .15 87  and P .84 13

—the 15.87 and 84.13 percentiles—
that are marked _`n v+  and _`n v-  
in [1] and many other text books 
because these are the percentiles 
where !n v  are for a normal distri-
bution. For the normal distribution 
only, samples lie below or above the 

n! v  bounds with a probability 

	 p n
2
1 1

2
erf= - c m; E� (3)

each, where erf is the error func-
tion. So while giving ,!v  ,2! v  and 
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3! v  bounds is valid for normal dis-
tributions, the values that should be 
presented for unknown and poten-
tially asymmetric distributions are 
as follows:

■■  instead of ,!n v  the two percen-
tiles P .15 87  and P .84 13  

■■ instead of ,2!n v  P .2 275  and 
P .97 725  

■■ instead of ,3!n v  P .0 135  and 
.P .99 865  

Also, we would then not give the 
mean value ,n  but the median 

,M P .50 0=  below which 50% of the 
samples are found. 

This is annotated in Figure 1. As 
mentioned above, inside the P .15 87 and 
P .84 13 lines, our data set looks normally 
distributed, but outside these lines, 
we cannot tell much from such a small 
number of samples. At this point, the 
only way to get further with statistics 
based on the mean and standard devia-
tion is to assume that the underlying 
distribution is a normal distribution. 

Assuming a Normal Distribution
So let us now look at the two data 
sets xi  and .yi  Equations (1) and 
(2) give . ,m 0 4088x =-  . ,s 7 0758x =  

. ,m 4 9308y =  and . .s 8 1285y =  Not 
surprisingly, the results from 
the data sets xi  and yi  look 
quite different. A graphical 
representation of m s3x x!  
and m s3y y!  is shown in Fig-
ure 2(a). 

What should alarm read-
ers and authors alike is that 
all s3!  points now lie out-
side the range of which we 
do indeed have measurement 
data: by drawing these points, 
we have implied information 
about a possible value range 
of x  and y  for which we have 
no empirical evidence. Also, 
the points drawn are just esti-
mates of the real values of n  
and ,3! v  and nothing is said 
about confidence yet. 

If and only if we are certain 
that the underlying distribu-
tion is a normal distribution, 
then we can actually calculate 
the ranges in which the true 

n  and v  lie for any confidence level. 
Since s3!  implies an error probability 
of 0.27%, as mentioned above, it might 
be a good idea to ask for an interval 
within which the true values lie with 
a probability of 95%: .c 0 95=  and 

. .c1 0 05a = - =  It is well known that 
the confidence interval for n  is then [4] 
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where t( / , )N1 2 1a- -  is the inverse 
cumulative Student-t  distribution, 
the solution of the integral equation 
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for the integration boundary 
.t( / , )N1 2 1a- -  Similarly for v  [5], 

	

( ) ( )

,

N s N s

c

1 1P
( / , ) ( / , )N N2 1
2

2

1 2 1
2

2

# #
|

v
|

- -

=
a a- - -

) 3

� (6)

where ( / , )N2 1
2| a -  is the inverse cumu-

lative Chi-square distribution, the 
solution of the integral equation 
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Solving these integrals numeri-
cally (in ScientificPython, e.g., imple-
mented as stdtrit and chdtri) or 
using a table [4], [5] for the data set 

,x  ,N 24=  gives estimated ranges 
for the true n  and :v

	
. . ,

. . ,

3 3966 2 5791
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x

x

g
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and for the data set ,y  ,N 8=
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. . .

1 8648 11 7264

5 3744 16 5438
y

y

g

g
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=

Therefore, what we should plot are 
ranges rather than points, as shown in 
Figure 2(b). These ranges are quite large, 
because both n  and v  are uncertain, 
so, e.g., the confidence range for the 
location of the 3n v+  point on the x  
axis extends from ( ) ( )min min3n v+  
to ( ) ( ) .max max3n v+  The figure 
already makes it clear how little we 
actually know with N 24=  and 8 sam-
ples, respectively. 

Now imagine that someone 
assumes that the estimated 

.sx xv=  That person would 
then believe that the prob-
ability that a sample lies out-
side the range m s3x x!  is only 
0.27%. If the true n  and v  both 
are the maxima of their respec-
tive confidence intervals, then 
the probability that a sample 
lies outside the range m s3x x!  
is actually 6.05%. This means 
that the error probability  
was underestimated by a factor  
of 22.4. 

All this must be shocking 
enough for authors, reviewers, 
and readers alike who have 
simply plotted and requested 
3v  bounds up to date. It gets 
even worse: Remember that 
even this is valid only if we 
have prior knowledge that 
the data we look at is exactly 
normally distributed. And this 
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Figure 1:  The data series xi  plotted to look like a cumulative 
distribution. The vertical axis is scaled such that a perfect nor-
mal distribution would be represented as a straight line [1].
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Figure 2:  (a) A standard way of drawing 3!` _n v  (actually )m s3!  in papers. (b) The 
intervals labeled 3!` _n v  are the intervals where the values 3!n v  can lie for all pos-
sible n  and v  in their respective 95% confidence intervals. The intervals labelled xn  and 

yn  are simply the respective 95% confidence intervals.

is knowledge that we never, ever have 
at all. Our example data comes from 
a trimmed temperature sensor, in 
which case we are even certain that 
the distribution is not normal. In that 
case, the estimation errors we make 
can be arbitrarily much higher. 

The sobering conclusion of this 
section is therefore not “apply this 
theory correctly instead of incor-
rectly.” The conclusion is “do not even 
use this theory.” We should never just 
assume a normal distribution without 
having a valid reason to do so. 

What if the Underlying  
Distribution Is Not Known?
So what can we do if we have no 
knowledge about the shape of the 
underlying distribution? The inter-
esting answer is that there is a dis-
tribution-independent method to 
obtain confidence intervals for per-
centiles that is even simpler, mathe-
matically, than the standard method 
described in the previous section. 

The percentiles of a distribution 
have a very nice property than can be 
explained with a simple thought exper-
iment: What do we know about the per-
centile Pp  or the median M P .50 0=  if 
we have just one single measurement? 
The question sounds absurd, but being 
what they are, we know that having 
one single measurement value ,x1  
then the percentile Pp  lies below that 
value with a probability of p1 -  and 
above it with a probability .p

So it is for every measurement 
value, independent of all the oth-
ers. Therefore, for a sorted list of 
samples ,xi  ,i N1f=  the probabil-
ity that a percentile lies somewhere 
between two measured values fol-
lows the binomial distribution [6] 
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where it is assumed that x0 " 3-  and 
.xN 1 " 3+  This is valid independent of 

the underlying probability distribution, 
as long as that distribution is suffi-
ciently well behaved (its being contin-
uous is already more than sufficient). 

Figure 3 shows this both for the 
median and for the 15.78 percentile. 
Adding the probabilities on the inter-
vals, we see that the probability that 
the true median is within the range 
of measured values is 87.5%, but 
the probability that P .15 87  is within 
is only 49.9%. This means that four 
measurements are only sufficient to 
estimate the median of the true dis-
tribution with a confidence of 87.5%. 

This can now easily be general-
ized using (8) for any number N  of 
measurements, any percentile ,p  
and any integer / :m N1 21#
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where ( / )p 1 2=  is inserted into (8) to 
obtain (9). This lets us, as described 
in [7] for the median, decide which 
values xi  we should use as bounds 
for different percentiles and differ-
ent confidence levels, as shown in 
Table 1. 

For example, if you have ten 
samples and need a 75% confidence 
interval for ,M  Table 1 says three, 
meaning that the interval x x3 8g  is 
a 75% (or better) confidence inter-
val. The most extreme data, ,x , , ,1 2 9 10  
are simply dropped. So we have a 
statistical method where ignoring 
outliers is not an ad-hoc strategy 
but a proven part of the procedure. 
The more measurements we have, 
the more outliers we can ignore, as 
Table 1 readily shows. 

We will show examples in the 
following section, but let us stress, 
right here, a very important point: 
if we choose actually measured val-
ues as interval bounds, then it is 

Figure 3:  The probability that the true median ( ,P %50  black) and the percentile P . %15 87  (red, 
dashed) of a process generating four measurements ,xi  ,i 1 4f=  lie in the intervals defined 
by the measured data .xi
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Table 1. This table shows which values to use as bounds. (Note: The values marked * give only 74.75% or 
94.95% confidence.) See, For example, the line 42*. if 42N =  measurement results are available, and they 
are sorted like ,x x x1 2 Ng# # #  then the 75% confidence interval for M  is x x17 26g  (42 17 1 26),- + =  
the 95% confidence interval for M  is ,x x15 28g  the 75% confidence interval for P15.87  and P84.13  is 

,x x5 38g  and the 95% confidence interval for P15.87  and P84.13  is .x x3 40g

N 75%
M  
95% 75%

P15.87  
95%  N 75%

M  
95% 75%

P15.87  
95%

1 — — — — 51 21 19 6 4
2 — — — — 52 22 19 6 4
3 1 — — — 53 22 19 7 4
4 1 — — — 54 23 20 7 4
5 1 — — — 55 23 20 7 *5
6 2 1 — — 56 24 21 7 5
7 2 1 — — 57 24 21 7 5
8 2 1 *1 — 58 25 22 7 5
9 3 2 1 — 59 25 22 7 5
10 3 2 1 — 60 26 22 8 5
11 4 2 1 — 61 26 23 8 5
12 4 3 1 — 62 26 23 8 5
13 4 3 1 — 63 27 24 8 5
14 5 3 1 — 64 27 24 8 6
15 5 4 1 — 65 28 25 8 6
16 6 4 1 — 66 28 25 8 6
17 6 5 2 — 67 29 26 9 6
18 7 5 2 1 68 29 26 9 6
19 7 5 2 1 69 30 26 9 6
20 7 6 2 1 70 30 27 9 6
21 8 6 2 1 71 31 27 9 6
22 8 6 2 1 72 31 28 9 7
23 9 7 2 1 73 32 28 9 7
24 9 7 3 1 74 32 29 10 7
25 10 8 3 1 75 33 29 10 7
26 10 8 3 1 76 33 29 10 7
27 11 8 3 1 77 33 30 10 7
28 11 9 3 2 78 34 30 10 7
29 11 9 3 2 79 34 31 10 7
30 12 10 3 2 80 35 31 10 8
31 12 10 3 2 81 35 32 11 8
32 13 *11 4 2 82 36 32 11 8
33 13 11 4 2 83 36 33 11 8
34 14 11 4 2 84 37 33 11 8
35 14 12 4 2 85 37 33 11 8
36 15 12 4 2 86 38 34 11 8
37 15 13 4 2 87 38 34 11 8
38 15 13 4 3 88 39 35 12 9
39 16 13 5 3 89 39 35 12 9
40 16 14 5 3 90 40 36 12 9
41 17 14 5 3 91 40 36 12 9
42 17 15 5 3 92 40 37 12 9
43 18 15 5 3 93 41 37 12 9
44 18 16 5 3 94 41 38 12 9
45 19 16 5 3 95 42 38 13 9
46 19 16 6 3 96 42 38 13 10
47 20 17 6 4 97 43 39 13 10
48 20 17 6 4 98 43 39 13 10
49 20 18 6 4 99 44 40 13 10
50 21 18 6 4 100 44 40 13 10
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impossible that any interval derived 
with this method ever exceeds the 
range of measured values, it is 
impossible that we imply information 
about ranges of x  for which we have 
no evidence, and the interval limits 
will also automatically have the cor-
rect number of significant digits. 

Note that this method estimates 
the median M P .50 0=  rather than the 
mean value .n  For a symmetric dis-
tribution, the median and the mean 
are the same, but, in general, they 
differ. Calculating the median mini-
mizes the mean absolute distance to 
all samples, but the mean value min-
imizes the mean squared distance, 
so the median may anyway be the 
more informative measure because 
measurement outliers have much 
more influence on the mean than on 
the median. 

A Suggestion for Statistical 
Benchmarking
Our suggestion for dealing with 
small data sets in future papers is to 
agree on a common confidence level 
c  for comparisons and then, for 
comparability with the old , ,1 2 3! v  
thinking, publish ranges for the 
median M  and for P .15 87  and ,P .84 13  
P .2 275  and ,P .97 725  and P .0 135  and 

.P .99 865

A brief survey of recent ESSCIRC 
papers shows that having only N 8=  
samples is quite common for aca-
demic and industry papers, so we set 
the confidence level c  such that P .15 87  
and P .84 13  are determined by the data 
extrema in the case .N 8=  This means 
we calculate Pc x P .1 15 87#= =" ,

. . .1 0 251 0 749- =  Therefore, allow-
ing papers with N 8=  samples to 
participate in numerical benchmarks 
already decides that our common 
confidence level shall be 75%; authors 
with N 8=  measurements can 
then state that their measured data 
extrema are the limits of a 75% con-
fidence interval on P .15 87  and .P .84 13

We can now ask the following 
question: what is the minimum N  
such that we can make statements 
about P .2 28  and ,P .0 135  which cor-
respond to 2n v-  and 3n v-  in 

normal distributions? Solving (9) 
using m 1=  for N, which simply is 
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gives minimum sample sizes of 
N 61=  and , ,N 1 027=  respectively. 
This means that, for normal MPW 
sample sizes (the most we ever got 
back was 50), it is never possible 
to talk about P .2 28  and P .0 135  with 
even a confidence level as low as 
75%. With respect to the infamous 

,6v  observe that there the value 
is . ,N 1 4 10· 9.  which more or less 
tells us: “forget about .6v ” 

Having more measurements 
does, however, give an advantage. 
Evaluating (9) shows that, at a confi-
dence level of 75%, P .15 87  and P .84 13  
are in the range x xN1f  for N 8=  
upward. The confidence increases 
for higher ,N  and at N 17=  we 
get to the situation that P .15 87  and 
P .84 13  are in the range x xN2 1f -  with 
75% confidence, i.e., we can omit 
the two data extrema. From N 24=  
upward, it is ,x xN3 2f -  so we can 
omit the two lowest and highest 
values, and so on. This means that 
having more measurements makes 
it possible to ignore more outliers 
in the data set. The same thinking 
can be applied to the median and 
to 95% confidence, as shown in  
Table 1 and as performed by the 
companion Web application [3]. 

This is where we can come back to 
the numerical examples right at the 
beginning: with N 8=  and . ,c 0 75=  
the P .15 87  and P .84 13  are in the range 

,x x1 8f  and the median is in the range 
.x x2 7f  For N 24=  and . ,c 0 75=  

the P .15 87  and P .84 13  are in the range 
,x x3 22f  and the median is in the 

range .x x9 16f  So an interval plot 
should be shown as in Figure 4(a). To 
compare, the same plot is replicated 
in Figure 4(b) together with the con-
ventional !` _n v  limits. The range is 
narrower for N 24=  than for ,N 8=  
so having more results lets us give 
a smaller range with the same con-
fidence. Figure 4(b) also shows that 
the naively obtained bounds given 
by m s!  are so tight that they do 
not even contain the 75% confidence 
intervals of the respective percentiles. 

In our opinion, if research groups 
would publish their figures as we 
propose here, then a better figure 
(e.g., narrower temperature error 
range) obtained would be good 
enough an indicator to discuss 
whether a new circuit merits being 
published. However, 75% confidence 
may not be enough to make deci-
sions on future research. 

To base design decisions on sta-
tistical evaluation, it would be bet-
ter to use 95% confidence limits all 
the time and look at the range of the 
P .15 87  and P .84 13  of, e.g., temperature 
errors. If the new range is narrower, 
there is a good chance that the design 
change has brought an improvement, 
given that it can be expected to have 

x, y

x, y

P15.87% P84.13%

M

P15.87% P84.13%
M

mx − sx mx + sx

−10−20

+20
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Figure 4:  (a) Data sets with median and percentiles estimated according to our method. (b) The 
same without M  and P  labels but drawn together with conventional m s!  limits.
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a distribution of a similar shape. This 
means, however, that N 18=  devices 
or more need to be measured, and 
(for )N18 27# #  that the data 
extrema are used as the 95% confi-
dence interval for P .15 87  and .P .84 13

Finally, what if we really need 
information on failure probability at 
a level of 0.27%, corresponding to the 
usual 3! v  thinking? Then we either 
have to measure 1,027 samples or 
more to obtain even an only 75% con-
fidence interval on that range, or we 
have to derive the shape of the under-
lying probability distribution from 
physical principles and then use very 
complicated statistics. There is, to 
our knowledge, no way that is more 
convenient, but still correct. 

Conclusions
So the sobering conclusion of this arti-
cle is that giving the mean n  and the 
standard deviation v  calculated from 
a small number of samples, or from 
samples that are not normal distrib-
uted, or even both, is quite meaning-
less. Giving any statistically obtained 
data without setting a confidence level 
is also meaningless. The only mean-
ingful way to disclose data are conclu-
sions of the form “We conclude that 
the parameter x  is within the range 
x xa bg  with probability p” or similar. 

We have shown how to do this even if 
we do not know how the physical quan-
tity we measure is actually distributed, 
which is quite useful, since that is a 
knowledge we very seldom have. Espe-
cially in trimmed ICs, we often have a 
very good model of how the majority 
of the values are distributed but almost 
no clue about the shape of the distribu-
tions for outliers, which unfortunately is 
precisely the region of interest when we 
want to estimate production yield. In a 
nutshell, unscientifically speaking: the 
normal distribution is just good enough 
for describing normality but not for 
describing extremes. 

It is true that there are much more 
elaborated methods to do statistics: 
Bayesian statistics can be done if the 
shape of the underlying distribution 
is known [8], kernel density estima-
tion can be used to estimate the shape 
of an unknown distribution from 
samples [9], and confidence intervals 
for many very different quantities can 
be estimated with bootstrapping [10]. 
However, all of these methods require 
a lot of knowledge about statistics 
and need to be adapted individually 
to each measurement situation and 
are therefore, in our opinion, not use-
ful for numerical benchmarking in sci-
entific literature. 

We are not sure whether it is a good 
idea at all to do statistical benchmark-
ing on MPW-sized sample sets, but if we 
want to do it, then let us at least do it 
right. One scientifically justifiable way 
to go is then the method described in 
the section “A Suggestion for Statistical 
Benchmarking” of this tutorial. 
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