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1 Introduction

This paper deals with some integrals of products of the sinc function defined as

sinc(t) =
{

sin(t)/t for t �= 0

1 for t = 0
. (1)

.

2001 veröffentlichten David und Jonathan Borwein im Ramanujan Journal eine Reihe
von Integralformeln, die dem Namensgeber der Zeitschrift sicher auch gefallen hätte:

∫ ∞

0

n∏
k=0

sinc

(
t

2k + 1

)
dt = π

2

für n = 0, 1, . . . , 6. Wer nun gewettet hätte, das ginge so weiter, hätte verloren: Der
Wert des Integrals für n = 7 liegt nämlich mit

467807924713440738696537864469

935615849440640907310521750000
π

haarscharf unterhalb von π
2 und fällt für wachsende n weiter. Der Beweis der Borweins

lieferte leider wenig Einsicht in das Phänomen. In der vorliegenden Arbeit führt der
Autor ein sehr einfaches und intuitives Argument ins Feld, welches den Effekt erklärt.
Darüber hinaus wird ein modifiziertes Beispiel präsentiert, wo der Wert π

2 erst nach 57
Schritten unterboten wird.
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The Borweins described an astonishing fact using these sinc functions [1, 2]:

∫ ∞

0
sinc (t) dt = π

2
(2)

∫ ∞

0
sinc(t) · sinc

(
t

3

)
dt = π

2
(3)

∫ ∞

0
sinc(t) · sinc

(
t

3

)
· sinc

(
t

5

)
dt = π

2
(4)

...∫ ∞

0
sinc(t) · sinc

(
t

3

)
· . . . · sinc

(
t

13

)
dt = π

2
(5)

but then ∫ ∞

0
sinc(t) · sinc

(
t

3

)
· . . . · sinc

(
t

13

)
· sinc

(
t

15

)
dt <

π

2
. (6)

The value of that last integral is ≈ 0.499999999992646 π .

As they write, when this fact was recently verified by a researcher using a computer al-
gebra package, he concluded that there must be a “bug” in the software. It is not a bug,
though; this series of integrals really only results in π/2 up to a certain point, and then
breaks down. This astonishes most mathematically educated readers, as especially those
readers mentally extrapolate the sequence shown above and find it surprising that some-
thing fundamental should change when the factor sinc(x/15) is introduced in (6).

This was proven in [1], but the proof is not graphic, and while it is intellectually appeal-
ing, it is difficult to really understand. In this paper we provide a simpler version of the
Borweins’ proof which gives a graphic and therefore intuitive understanding of what it is
that changes fundamentally when the sequence breaks down.

In addition, it also lets us show that the integral series above breaks down much later if
there is another factor 2 cos(t) in the integral:

∫ ∞

0
2 cos(t) · sinc (t) dt = π

2
(7)

...∫ ∞

0
2 cos(t) · sinc(t) · sinc

(
t

3

)
· . . . · sinc

(
t

111

)
dt = π

2
(8)

∫ ∞

0
2 cos(t) · sinc(t) · sinc

(
t

3

)
· . . . · sinc

(
t

111

)
· sinc

(
t

113

)
dt <

π

2
. (9)

We will now show where, and why, these two series break down, and we will do this in two
steps: in Section 2, we show mostly graphically what happens when a rectangle function
is repeatedly convolved with narrower unit-area rectangles. In Section 3, this insight then
leads to a comparatively simple calculation of the point where the above series break down.
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2 Convolution with a rectangle
The convolution of two functions is defined as [3, 4]

F(ω) ∗ G(ω) =
∫ ∞

η=−∞
F(η)G(η − ω)dη . (10)

If G is a unit-area rectangle of width 1/k, e.g.,

G(ω) = k rect (kω) ,

then this convolution operation corresponds to taking the moving average of the function
F , where the width of the moving-average window is the width of the unit rectangle.
Figure 1 shows examples for F and G for three different values of ω. In this example,
the function F has a plateau, i.e., it is constant F(0) in the middle, has two falling slopes
towards the outside, and is zero outside these slopes.

ω

F (η)

G(ω3 − η)G(ω2 − η)G(ω1 − η)

Fig. 1 Factors in the convolution integral (10) for three different values of ω.

For ω3, the product F(η)G(η − ω) is obviously zero for all η and F ∗ G = 0 at ω3. This
is the case for all ω such that G lies outside the region where F is non-zero. For ω2, the
product F(η)G(η − ω) is a rectangle with area F(0), hence F ∗ G = F(0) at ω2. This is
the case for all ω such that G lies within the region where F = F(0). For ω1, the product
F(η)G(η − ω) is a shape with finite area smaller than F(0). So 0 < F ∗ G < F(0) for ω1
and all similar cases. And this is already everything we need.

Figure 2 shows two rectangles with unit area and widths 1 and 1
2 . We will now discuss,

graphically first, what happens when F is repeatedly convolved with G.

Let F(ω) = rect(ω) and G(ω) = 2 rect(2ω), as shown in Figure 2. Now we look at
a series of convolution products shown in Figure 3. There, F0 = F , F1 = F0 ∗ G,

ω
− 1

2

F (ω) 1

1
2

ω
− 1

4

G(ω) 2

1
4

Fig. 2 Two unit-area rectangles F and G with different width.
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ω

0− 1
2

1
2

F0(ω)

ω

0− 1
2

1
2

F1(ω)

ω

0− 1
2

1
2

F2(ω)

ω

0− 1
2

1
2

F3(ω)

ω

0− 1
2

1
2

F4(ω)

ω

0− 1
2

1
2

F5(ω)

ω

0− 1
2

1
2

F6(ω)

Fig. 3 Convolution products: every Fk is the function above convolved with G , a unit-area rectangle of width 1
2 .

F2 = F1 ∗ G, and so on. All these functions have markers on them that help us see what
happens qualitatively.

The first graph shows F0 with four types of markers: a circle, , marking the point where
F0(0) = 1; two crosses, , marking the two points where F0

( ± 1
2

) = 1
2 , which is how

the rectangle function rect(·) is conventionally defined; a ten-pointed star, , marking the
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begin and end of the range in which the left slope of F0 is point-symmetric around
(− 1

2 , 1
2

)
;

and a pentagon, , marking the begin and end of the range in which the right slope of F0
is point-symmetric around

( 1
2 , 1

2

)
.

Intuitively seen, repeated convolutionwith G is a step-wise erosion process. In this erosion
process, each convolution step reduces the width of the plateau as well as the width of the
point-symmetric regions by twice the width of G, symmetrically. Proceeding through
Figure 3 from top to bottom, it can be seen how the plateau is eroded from F0 to F1
and becomes a single point in F2, and how it disappears from F3 onwards, such that
F3,4,...(0) < 1. F3 still has point-symmetric regions, though. These point-symmetric
regions are reduced to single points in F4, and are then eroded by the repeated convolution
from F5 onwards, such that F5,6,...

(± 1
2

)
< 1

2 .

All that remains to do at this point is a generalization of this discussion, and this goes as
follows: Let {ak} be a monotonically non-increasing series of positive real numbers. Let
F0 = a0 rect(a0ω) and recursively define Fk = Fk−1 ∗ ak rect(akω). The function Fk then
has the total width

∑n
k=0 ak . The plateau gets eroded when the sum of the widths of the

rectangles convolved with F0 is greater than the width of F0:

F0(0) = 1

Fn(0) = 1 for all n such that
n∑

k=1

ak ≤ a0

Fn(0) < Fn−1(0) otherwise.

The erosion of the symmetry points happens when that sum is twice as large:

F0

(a0

2

)
= F0

(
−a0

2

)
= 1

2

Fn

(a0

2

)
= Fn

(
−a0

2

)
= 1

2
for all n such that

n∑
k=1

ak ≤ 2a0

Fn

(a0

2

)
= Fn

(
−a0

2

)
< Fn−1

(a0

2

)
otherwise.

3 Calculating the two curious integrals

Now we have enough to tackle (2)–(9). The arguments of those integrals are even func-
tions, so in general, we can calculate

2τn =
∫ ∞

−∞

n∏
k=0

sinc(akt)dt (11)

and

2εn =
∫ ∞

−∞
2 cos a0t

n∏
k=0

sinc(akt)dt . (12)
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In order to do this, we use the Fourier transform in the form used in engineering and signal
processing [3, 4],

F(ω) =
∫ ∞

−∞
f (t)e− jωt dt ; (13)

f (t) = 1

2π

∫ ∞

−∞
F(ω)e jωtdω . (14)

It follows from (13) that

F(0) =
∫ ∞

−∞
f (t)dt , (15)

hence the integral (11) can be calculated by evaluating the Fourier transform of the inte-
gral’s argument at ω = 0.

In general, the Fourier transform of a product of functions is
∫ ∞

−∞
f (t)g(t)e− jωt dt = 1

2π
F(ω) ∗ G(ω) . (16)

The Fourier transform of the sinc function is∫ ∞

−∞
sinc(akt)e

− jωt dt = 2π

2ak
rect

(
ω

2ak

)
. (17)

If we use the commutativity of the convolution, (16) can be written as
∫ ∞

−∞
f (t)g(t)e− jωt dt = F(ω) ∗ 1

2π
G(ω) . (18)

If g(t) = sinc(akt), then the second term of the convolution in (18) is a unit-area rectangle
of width 2ak .

We now see two things: First, the Fourier transform of the product of sinc functions in
(11) is simply a series of convolutions of the function π

a0
rect

(
ω

2a0

)
, which is a rectangle of

width 2a0 and height π
a0

, with unit-area rectangles of width 2a1, 2a2, and so on. Second,
the value of 2τn from (11) is the value of that Fourier transform at ω = 0, which starts
to decrease when the plateau of π

a0
rect

(
ω

2a0

)
is eroded. This is very similar to the graphic

discussion in Section 2. It therefore follows immediately that

2τ0 = π

a0

2τn = π

a0
for all n such that

n∑
k=1

ak ≤ a0

2τn < 2τn−1 otherwise.

Therefore the integral series (2)–(6) breaks down when the sum a1 + · · · + an exceeds
1, which is when the term sinc(x/15) comes into the product. This is what the Borweins
proved in [1].
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Now on to (12). We first replace the cos(·) by its exponential representation and then use
the linearity of the integration to obtain a sum of integrals:

2εn =
∫ ∞

−∞
2 cos a0t

n∏
k=0

sinc(akt)dt =
∫ ∞

−∞

(
e ja0t + e− j a0t

) n∏
k=0

sinc(akt)dt

=
∫ ∞

−∞
e ja0t

n∏
k=0

sinc(akt)dt +
∫ ∞

−∞
e− j a0t

n∏
k=0

sinc(akt)dt . (19)

This additional exponential factor has a distinct effect in the Fourier transform (13). It
causes a frequency shift:∫ ∞

−∞
e− j a0t f (t)e− jωt dt =

∫ ∞

−∞
f (t)e− j (ω+a0)t dt .

Therefore the value of the second integral in (19) is the value of the Fourier transform of
the product of sinc functions not for ω = 0, as before, but for ω = −a0. And this is
precisely where we find the symmetry point of one slope in Section 2. Similarly, the first
integral in (19) has the value at the other slope’s symmetry point, at ω = +a0. Without
further effort, we see that the series in (12) breaks down when the symmetry points of the
slopes are eroded, and this gives

2ε0 = π

a0
, 2εn = π

a0
for all n such that

n∑
k=1

ak ≤ 2a0

2εn < 2εn−1 otherwise.

Therefore, the integral series (7)–(9) breaks down when the sum a1 + · · · + an exceeds 2,
which is when the term sinc(x/113) comes into the product, much later than for the first
series.
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